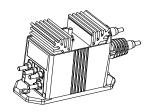


Voltage Transducer LV 100-2000/SP15

For the electronic measurement of voltages: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$egin{array}{c} oldsymbol{V}_{PN} \ oldsymbol{V}_{PM} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal voltage Primary voltage, measur Primary nominal current Measuring resistance	ing range	2000 0 ± 5 R _{M min}		V V mA
	with \pm 15 V with \pm 24 V	@ $\pm 2000 \text{ V}_{max}$ @ $\pm 3000 \text{ V}_{max}$ @ $\pm 2000 \text{ V}_{max}$ @ $\pm 3300 \text{ V}_{max}$	0 0 0 0	210 120 410 250	Ω Ω Ω
I _{SN} K _N V _C I _C	Secondary nominal curre Conversion ratio Supply voltage (± 10 %) Current consumption		50 2000 ± 15 . < 37	. – .	mA MA V mA


Accuracy - Dynamic performance data

\mathbf{X}_{G} $\mathbf{\mathcal{E}}_{L}$	Overall accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity error	± 0.9 < 0.1		% %
	Offset current @ I_p = 0, T_A = 25°C Temperature variation of I_O - 40°C + 75°C Response time to 90 % of V_{PN} step	0.4 70	Max ± 0.2 ± 1.0	mA mA μs

General data

T_A	Ambient operating temperature	- 40 + 75	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	20000 : 2000	
Р	Total primary power loss	10	W
$\mathbf{R}_{\scriptscriptstyle 1}$	Primary resistance @ T _A = 25°C	400	$k\Omega$
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 75°C	56	Ω
m	Mass	790	g
	Standards	EN 50155: 1995	

$V_{PN} = 2000 V$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Special features

- **V**_C = ± 15 .. 24 (± 10 %) V
- $V_d = 9 \text{ kV}^{-1}$
- $T_A = -40^{\circ}C ... + 75^{\circ}C$
- VRT Burn-in
- Shield between primary and secondary
- Connection to secondary circuit on M5 threaded studs
- Labeled with customer part number.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- · Auxiliary converter
- Battery charger.

Application Domain

• Traction.

Voltage Transducer LV 100-2000/SP15

Isolation characteristic			
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	9 1)	kV
		1 ²⁾	kV
		Min	
dCp	Creepage distance	164.8	mm
dCl	Clearance distance	47.1	mm
CTI	Comparative Tracking Index (group I)	600	

Notes: 1) Between primary and secondary + shield + heat sink

Safety

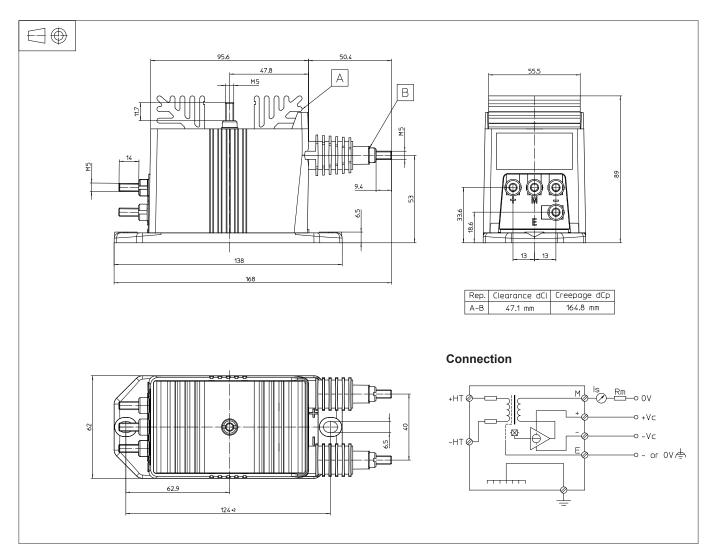
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

²⁾ Between secondary and shield.

Dimensions LV 100-2000/SP15 (in mm.)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque 5 Nm · Connection of primary

Connection of secondary

Connection to the ground

± 0.3 mm

2 holes Ø 6.5 mm

2 x M6 steel screws

2 M5 threaded studs

4 M5 threaded studs

M5 threaded stud

• Recommended fastening torque 2.2 Nm

Remarks

- ${\bf I}_{\rm S}$ is positive when ${\bf V}_{\rm P}$ is applied on terminal + HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.